ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Кружки, факультативы, спецкурсы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Площадь равнобедренной трапеции, описанной около окружности, равна S, а высота трапеции в два раза меньше её боковой стороны. Существует ли такое значение x, что выполняется равенство arcsin2x + arccos2x = 1? Доказать, что уравнение 19x² – 76y² = 1976 не имеет решений в целых числах. В равнобедренном треугольнике ABC (AB = BC) биссектриса BD в два раза короче биссектрисы AE. Найдите углы треугольника ABC. Хорды AB, AC и BC окружности равны соответственно 15, 21 и 24. Точка D – середина дуги CB. На какие части BE и EC делится хорда BC прямой AD? На клетчатой плоскости со стороной клетки 1 нарисован круг радиуса 1000. Докажите, что суммарная площадь клеток, целиком лежащих внутри этого круга, составляет не менее 99% площади круга. На плоскости нарисовано несколько прямых (не меньше двух), никакие две из которых не параллельны и никакие три не проходят через одну точку. Докажите, что среди частей, на которые эти прямые делят плоскость, найдется хотя бы один угол. На окружности отмечено n точек, причём известно, что для каждых двух отмеченных точек одна из дуг, соединяющих их, имеет величину, меньшую 120°. Докажите, что все точки лежат на одной дуге величиной 120°. Около окружности радиуса R описана равнобедренная трапеция ABCD. E и K – точки касания этой окружности с боковыми сторонами трапеции. Угол между основанием AB и боковой стороной AD трапеции равен 60°. Докажите, что EK || AB и найдите площадь трапеции ABKE. Дана клетчатая таблица 99×99, каждая клетка которой окрашена в чёрный или в белый цвет. Разрешается одновременно перекрасить все клетки некоторого столбца или некоторой строки в тот цвет, клеток которого в этом столбце или в этой строке до перекрашивания было больше. Всегда ли можно добиться того, чтобы все клетки таблицы стали покрашены в один цвет? Даны точки A и B. Где на прямой AB расположены точки, расстояние от которых до точки B больше, чем до точки A? При организации экспедиции на Эверест участниками было установлено
четыре высотных лагеря (не считая базового), на растоянии дня пути друг
от друга, после чего все спустились вниз. Пересчитав запасы, руководитель
решил, что надо занести еще один баллон кислорода в четвертый лагерь, а
потом всем опять вернуться вниз на отдых. При этом каждый участник
7 волков съедают 7 баранов за 7 дней. За сколько дней 9 волков съедят 9 баранов? Разбейте куб на три пирамиды. Найти числа, равные удвоенной сумме своих цифр. |
Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 644]
Найти числа, равные удвоенной сумме своих цифр.
По кругу посажены 19 кустов ландышей.
Летела стая гусей, а навстречу им летит один гусь и говорит: "Здравствуйте, сто гусей!" Вожак стаи отвечает ему: "Нет, нас не сто гусей! Вот, если бы нас было столько, сколько есть, да еще столько, да еще полстолька, де еще четверть столька, да ты, гусь, с нами, вот тогда нас было бы сто гусей, а так..." Сколько же гусей было в стае?
Каждую грань кубика разбили на четыре равных квадрата и раскрасили эти квадраты в три цвета так, чтобы квадраты, имеющие общую сторону, были покрашены в разные цвета. Докажите, что в каждый цвет покрашено по 8 квадратиков.
7 волков съедают 7 баранов за 7 дней. За сколько дней 9 волков съедят 9 баранов?
Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 644]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке