ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

Найти все такие натуральные k, которые можно представить в виде суммы двух взаимно простых чисел, отличных от 1.

   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 87972

Темы:   [ Четность и нечетность ]
[ Степень вершины ]
Сложность: 3-
Классы: 6,7,8

Докажите, что в любом графе
  а) сумма степеней всех вершин равна удвоенному числу рёбер (и следовательно, чётна);
  б) число вершин нечётной степени чётно.

Прислать комментарий     Решение

Задача 97810

Темы:   [ НОД и НОК. Взаимная простота ]
[ Перебор случаев ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

Найти все такие натуральные k, которые можно представить в виде суммы двух взаимно простых чисел, отличных от 1.

Прислать комментарий     Решение

Задача 116573

Темы:   [ Вписанные и описанные многоугольники ]
[ Правильные многоугольники ]
[ Хорды и секущие (прочее) ]
Сложность: 3
Классы: 10,11

Каково максимальное число попарно непараллельных отрезков с концами в вершинах правильного n-угольника?

Прислать комментарий     Решение

Задача 79635

Темы:   [ Тождественные преобразования ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 8,9

Докажите, что любое целое число можно представить в виде суммы кубов пяти целых чисел.
Например,  52 = 4³ + (−3)³ + 2³ + 2³ + (−1)³.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .