ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Туры:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дана невозрастающая последовательность неотрицательных чисел
a1 ≥ a2 ≥ a3 ≥ ... ≥ a2k+1 ≥ 0.
|
Страница: << 1 2 3 4 5 >> [Всего задач: 23]
На стороне AB квадрата ABCD взята точка K, на стороне CD – точка L, на отрезке KL – точка M. Докажите, что вторая (отличная от M) точка пересечения окружностей, описанных около треугольников AKM и MLC, лежит на диагонали AC.
На горе 1001 ступенька, на некоторых лежат камни, по одному на ступеньке. Сизиф берёт любой камень и переносит его на ближайшую сверху свободную ступеньку (то есть, если следующая ступенька свободна то на неё, а если занята, то на несколько ступенек вверх до первой свободной). После этого Аид скатывает на одну ступеньку вниз один из камней, у которых предыдущая ступенька свободна. Камней 500, и первоначально они лежали на нижних 500 ступеньках. Сизиф и Аид действуют по очереди, начинает Сизиф. Его цель – положить камень на верхнюю ступеньку. Может ли Аид ему помешать?
Дана невозрастающая последовательность неотрицательных чисел
a1 ≥ a2 ≥ a3 ≥ ... ≥ a2k+1 ≥ 0.
В параллелограмме ABCD, не являющемся ромбом, проведена биссектриса угла BAD. K и L – точки её пересечения с прямыми BC и CD соответственно. Докажите, что центр окружности, проведённой через точки C, K и L, лежит на окружности, проведённой через точки B, C и D.
Игра в "супершахматы" ведётся на доске размером 100×100, и в ней участвует 20 различных фигур, каждая из которых ходит по своим правилам. Известно, что любая фигура с любого места бьет не более 20 полей (но больше о правилах ничего не сказано, например, если фигуру А передвинуть, то о том, как изменится множество битых полей мы ничего не знаем). Докажите, что можно расставить на доске все 20 фигур так, чтобы ни одна из них не била другую.
Страница: << 1 2 3 4 5 >> [Всего задач: 23] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|