Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

Можно ли разбить какой-нибудь треугольник на 5 одинаковых треугольников?

Вниз   Решение


Длина ребра правильного тетраэдра равна a. Через одну из вершин тетраэдра проведено треугольное сечение.
Докажите, что периметр P этого треугольника удовлетворяет неравенству  P > 2a.

ВверхВниз   Решение


Дан треугольник ABC. Найдите все такие точки P, что площади треугольников ABP, BCP и ACP равны.

ВверхВниз   Решение


Дан набор из нескольких гирек, на каждой написана масса. Известно, что набор масс и набор надписей одинаковы, но возможно некоторые надписи перепутаны. Весы представляют из себя горизонтальный отрезок, закреплённый за середину. При взвешивании гирьки прикрепляются в произвольные точки отрезка, после чего весы остаются в равновесии либо отклоняются в ту или иную сторону. Всегда ли удастся за одно взвешивание проверить, все надписи верны или нет? (Весы будут в равновесии, если сумма моментов гирь справа от середины равна сумме моментов гирь слева; иначе отклонятся в сторону, где сумма больше. Моментом гири называется произведение ms массы гири m на расстояние s он нее до середины отрезка.)

ВверхВниз   Решение


Автор: Фомин С.В.

Среди десятизначных чисел каких больше: тех, которые можно представить как произведение двух пятизначных чисел, или тех, которые нельзя так представить?

ВверхВниз   Решение


Сколькими способами можно выбрать 4 краски из имеющихся 7 различных?

ВверхВниз   Решение


Боковая грань правильной четырёхугольной пирамиды образует с плоскостью основания угол 45o . Найдите угол между противоположными боковыми гранями.

ВверхВниз   Решение


Выразите длину симедианы AS через длины сторон треугольника ABC.

ВверхВниз   Решение


Правильный треугольник разрезать на четыре части так, чтобы из них можно было сложить квадрат.

ВверхВниз   Решение


В пространстве даны восемь параллельных плоскостей таких, что расстояния между каждыми двумя соседними равны. На каждой из плоскостей выбирается по точке. Могут ли выбранные точки оказаться вершинами куба.

ВверхВниз   Решение


а) p,  p + 10,  p + 14  – простые числа. Найдите p.

б) p,  2p + 1,  4p + 1  – простые числа. Найдите p.

ВверхВниз   Решение


Автор: Фольклор

Можно ли подобрать четыре непрозрачных попарно непересекающихся шара так, чтобы ими можно было загородить точечный источник света?

ВверхВниз   Решение


Докажите, что если отрезок B1C1 антипараллелен стороне BC, то B1C1$ \bot$OA, где O — центр описанной окружности.

ВверхВниз   Решение


Назовём натуральное число "симпатичным", если в его записи встречаются только нечётные цифры.
Сколько существует четырёхзначных "симпатичных" чисел?

ВверхВниз   Решение


Автор: Фольклор

Рассматриваются всевозможные пары  (a, b)  натуральных чисел, где  a < b.  Некоторые пары объявляются чёрными, остальные – белыми.
Можно ли это сделать так, чтобы для любых натуральных a и d среди пар  (a, a + d),  (a, a + 2d),  (a + d, a + 2d)  встречались и чёрные, и белые?

ВверхВниз   Решение


Автор: Фольклор

В центре квадратного бассейна находится мальчик, а в вершине на берегу стоит учительница. Максимальная скорость мальчика в воде в три раза меньше максимальной скорости учительницы на суше. Учительница плавать не умеет, а на берегу мальчик бегает быстрее учительницы. Сможет ли мальчик убежать?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 108026  (#1)

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Тождественные преобразования (тригонометрия) ]
[ Площадь четырехугольника ]
[ Связь величины угла с длиной дуги и хорды ]
Сложность: 3
Классы: 8,9

Из вершины A квадрата ABCD со стороной 1 проведены два луча, пересекающие квадрат так, что вершина C лежит между лучами. Угол между лучами равен β. Из вершин B и D проведены перпендикуляры к лучам. Найдите площадь четырёхугольника с вершинами в основаниях этих перпендикуляров.

Прислать комментарий     Решение

Задача 97948  (#2)

Темы:   [ Задачи на движение ]
[ Примеры и контрпримеры. Конструкции ]
[ Теория игр (прочее) ]
Сложность: 3
Классы: 8,9,10

Автор: Фольклор

В центре квадратного бассейна находится мальчик, а в вершине на берегу стоит учительница. Максимальная скорость мальчика в воде в три раза меньше максимальной скорости учительницы на суше. Учительница плавать не умеет, а на берегу мальчик бегает быстрее учительницы. Сможет ли мальчик убежать?

Прислать комментарий     Решение

Задача 97949  (#3)

Темы:   [ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Уравнения в целых числах ]
[ Числа Фибоначчи ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Доказать, что существует бесконечно много таких пар  (a, b)  натуральных чисел, что  a² + 1  делится на b, а  b² + 1  делится на a.

Прислать комментарий     Решение

Задача 108027  (#4)

Темы:   [ Перегруппировка площадей ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 4-
Классы: 8,9

Из точки M внутри треугольника опущены перпендикуляры на высоты. Оказалось, что отрезки высот от вершин до оснований этих перпендикуляров равны между собой. Докажите, что в этом случае они равны диаметру вписанной в треугольник окружности.

Прислать комментарий     Решение

Задача 97951  (#5)

Темы:   [ Четность и нечетность ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Рассматриваются всевозможные пары  (a, b)  натуральных чисел, где  a < b.  Некоторые пары объявляются чёрными, остальные – белыми.
Можно ли это сделать так, чтобы для любых натуральных a и d среди пар  (a, a + d),  (a, a + 2d),  (a + d, a + 2d)  встречались и чёрные, и белые?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .