ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Аналитик сделал прогноз изменения курса доллара на каждый из трёх ближайших месяцев: на сколько процентов (число, большее 0% и меньшее 100%) изменится курс за июль, на сколько – за август, и на сколько – за сентябрь. Оказалось, что про каждый месяц он верно предсказал, на сколько процентов изменится курс, но ошибся с направлением изменения (то есть если он предсказывал, что курс увеличится на $x\%$, то курс падал на $x\%$, и наоборот). При этом через три месяца курс совпал с прогнозом. В какую сторону в итоге изменился курс?

Вниз   Решение


Автор: Фольклор

Можно ли так выбрать шар, треугольную пирамиду и плоскость, чтобы всякая плоскость, параллельная выбранной, пересекала шар и пирамиду по фигурам равной площади?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 98035  (#М1211)

Темы:   [ Площадь сечения ]
[ Тетраэдр (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 10,11

Автор: Фольклор

Можно ли так выбрать шар, треугольную пирамиду и плоскость, чтобы всякая плоскость, параллельная выбранной, пересекала шар и пирамиду по фигурам равной площади?

Прислать комментарий     Решение

Задача 98038  (#М1212)

Темы:   [ Арифметическая прогрессия ]
[ Суммы числовых последовательностей и ряды разностей ]
[ НОД и НОК. Взаимная простота ]
[ Ряды с неотрицательными членами ]
Сложность: 4-
Классы: 9,10

Натуральный ряд представлен в виде объединения некоторого множества попарно непересекающихся целочисленных бесконечных арифметических прогрессий с положительными разностями  d1, d2, d3, ... .  Может ли случиться, что при этом сумма   1/d1 + 1/d2 + ... + 1/dk   не превышает 0,9? Рассмотрите случаи:
  а) общее число прогрессий конечно;
  б) прогрессий бесконечное число (в этом случае условие нужно понимать в том смысле, что сумма любого конечного числа слагаемых из бесконечной суммы не превышает 0,9).

Прислать комментарий     Решение

Задача 98040  (#М1214)

Темы:   [ Числовые таблицы и их свойства ]
[ Индукция (прочее) ]
[ Подсчет двумя способами ]
Сложность: 4
Классы: 8,9,10

В прямоугольной таблице m строк и n столбцов  (m < n).  В некоторых клетках таблицы стоят звёздочки, так что в каждом столбце стоит хотя бы одна звёздочка. Докажите, что существует хотя бы одна такая звёздочка, что в одной строке с нею находится больше звёздочек, чем с нею в одном столбце.

Прислать комментарий     Решение

Задача 98041  (#М1217)

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Формулы сокращенного умножения (прочее) ]
[ Тождественные преобразования ]
Сложность: 3
Классы: 7,8,9

Автор: Манукян С.

Докажите, что при любом натуральном n  

Прислать комментарий     Решение

Задача 98060  (#М1223)

Темы:   [ Ортогональная (прямоугольная) проекция ]
[ Неравенство Коши ]
[ Неравенства с площадями ]
Сложность: 4-
Классы: 8,9

На квадратный лист бумаги со стороной a посадили несколько клякс, площадь каждой из которых не больше 1. Оказалось, что каждая прямая, параллельная сторонам листа, пересекает не более одной кляксы. Докажите, что суммарная площадь клякс не больше a.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .