ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На шахматной доске 4×4 расположена фигура – "летучая ладья", которая ходит так же, как обычная ладья, но не может за один ход стать на поле, соседнее с предыдущим. Может ли она за 16 ходов обойти всю доску, становясь на каждое поле по разу, и вернуться на исходное поле?

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 39]      



Задача 52488

Темы:   [ Угол между касательной и хордой ]
[ Взаимное расположение двух окружностей ]
[ Вспомогательные равные треугольники ]
Сложность: 3-
Классы: 8,9

Окружность S2 проходит через центр O окружности S1 и пересекает её в точках A и B. Через точку A проведена касательная к окружности S2. Точка D – вторая точка пересечения этой касательной с окружностью S1. Докажите, что  AD = AB.

Прислать комментарий     Решение

Задача 98127

Тема:   [ Линейные неравенства и системы неравенств ]
Сложность: 3-
Классы: 7,8,9

Автор: Шлейфер Р.

n чисел  (n > 1)  называются близкими, если каждое из них меньше чем сумма всех чисел, делённая на  n – 1.  Пусть  a, b, c, ...   – n близких чисел, S – их сумма. Докажите, что
  а) все они положительны;
  б)  a + b > c;
  в)  a + b > S/n–1.

Прислать комментарий     Решение

Задача 98102

 [Летучая ладья]
Темы:   [ Шахматные доски и шахматные фигуры ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8

На шахматной доске 4×4 расположена фигура – "летучая ладья", которая ходит так же, как обычная ладья, но не может за один ход стать на поле, соседнее с предыдущим. Может ли она за 16 ходов обойти всю доску, становясь на каждое поле по разу, и вернуться на исходное поле?

Прислать комментарий     Решение

Задача 98103

Темы:   [ Цепные (непрерывные) дроби ]
[ Обыкновенные дроби ]
[ Тождественные преобразования ]
Сложность: 3
Классы: 7,8,9

Докажите, что

Прислать комментарий     Решение

Задача 98104

Темы:   [ Свойства модуля. Неравенство треугольника ]
[ Принцип крайнего (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

На окружности записаны шесть чисел: каждое равно модулю разности двух чисел, стоящих после него по часовой стрелке.
Сумма всех чисел равна 1. Найти эти числа.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .