ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Прямая отрезает от правильного n-угольника со стороной 1 треугольник APQ так, что AP + AQ = 1 (A – вершина n-угольника). |
Страница: 1 [Всего задач: 4]
Прямая отрезает от правильного n-угольника со стороной 1 треугольник APQ так, что AP + AQ = 1 (A – вершина n-угольника).
а) Существуют ли такие натуральные числа a, b, c, что из двух чисел a/b + b/c + c/a и b/a + c/b + a/c ровно одно – целое? б) Докажите, что если они оба целые, то a = b = c.
а) Разбейте отрезок [0, 1] на чёрные и белые отрезки
так, чтобы для любого многочлена p(x) степени не выше второй сумма приращений p(x) по всем чёрным отрезкам равнялась сумме приращений p(x) по всем белым интервалам. б) Удастся ли проделать аналогичную операцию для всех многочленов степени не выше 1995?
Геологи взяли в экспедицию 80 банок консервов, веса которых все известны и различны (имеется список). Через некоторое время надписи на консервах стали
нечитаемыми, и только завхоз знает, где что. Он может это всем доказать (то есть обосновать, что в какой банке находится), не вскрывая консервов и пользуясь только
сохранившимся списком и двухчашечными весами со стрелкой, показывающей разницу весов.
Страница: 1 [Всего задач: 4] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|