ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Пастор А.

В некотором государстве было 2002 города, соединённых дорогами так, что если запретить проезд через любой из городов, то из каждого из оставшихся городов можно добраться до любого другого. Каждый год король выбирает некоторый несамопересекающийся циклический маршрут и приказывает построить новый город, соединить его дорогами со всеми городами выбранного маршрута, а все дороги этого маршрута закрыть за ненадобностью. Через несколько лет в стране не осталось ни одного несамопересекающегося циклического маршрута, проходящего по ее городам. Докажите, что в этот момент количество городов, из которых выходит ровно одна дорога, не меньше 2002.

   Решение

Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 100]      



Задача 57484  (#10.073)

Тема:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 5
Классы: 8

ABC - прямоугольный треугольник с прямым углом C. Докажите, что  ma2 + mb2 > 29r2.
Прислать комментарий     Решение


Задача 57485  (#10.074)

Тема:   [ Неравенства для остроугольных треугольников ]
Сложность: 4
Классы: 8

Докажите, что для остроугольного треугольника

$\displaystyle {\frac{m_a}{h_a}}$ + $\displaystyle {\frac{m_b}{h_b}}$ + $\displaystyle {\frac{m_c}{h_c}}$ $\displaystyle \leq$ 1 + $\displaystyle {\frac{R}{r}}$.


Прислать комментарий     Решение

Задача 57486  (#10.075)

Тема:   [ Неравенства для остроугольных треугольников ]
Сложность: 4
Классы: 8

Докажите, что для остроугольного треугольника

$\displaystyle {\frac{1}{l_a}}$ + $\displaystyle {\frac{1}{l_b}}$ + $\displaystyle {\frac{1}{l_c}}$ $\displaystyle \leq$ $\displaystyle \sqrt{2}$$\displaystyle \left(\vphantom{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\right.$$\displaystyle {\frac{1}{a}}$ + $\displaystyle {\frac{1}{b}}$ + $\displaystyle {\frac{1}{c}}$$\displaystyle \left.\vphantom{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\right)$.


Прислать комментарий     Решение

Задача 57487  (#10.076)

Тема:   [ Неравенства для остроугольных треугольников ]
Сложность: 4
Классы: 8

Докажите, что если треугольник не тупоугольный, то  ma + mb + mc $ \geq$ 4R.
Прислать комментарий     Решение


Задача 57488  (#10.077)

Тема:   [ Неравенства для остроугольных треугольников ]
Сложность: 4+
Классы: 8

Докажите, что если в остроугольном треугольнике  ha = lb = mc, то этот треугольник равносторонний.
Прислать комментарий     Решение


Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 100]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .