|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На плоскости дан угол и точка К внутри него. Доказать, что найдётся точка М, обладающая следующим свойством: если произвольная прямая, проходящая через К, пересекает стороны угла в точках А и В, то МК является биссектрисой угла АМВ. В ромбе ABCD угол при вершине A равен 60°. Точка N делит сторону AB в отношении AN : BN = 2 : 1. Найдите тангенс угла DNC. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 76]
Докажите для положительных значений переменных неравенство
Докажите неравенство для положительных значений переменных: (ab + bc + ac)² ≥ 3abc(a + b + c).
Докажите для положительных значений переменной неравенство
a, b, c – такие три числа, что a + b + c = 0. Доказать, что в этом случае справедливо соотношение ab + ac + bc ≤ 0.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 76] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|