Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На описанной окружности треугольника $ABC$ отметили середины дуг $BAC$ и $CBA$ – точки $M$ и $N$ соответственно, и середины дуг $BC$ и $AC$ – точки $P$ и $Q$ соответственно. Окружность $\omega_1$ касается стороны $BC$ в точке $A_1$ и продолжений сторон $AC$ и $AB$. Окружность $\omega_2$ касается стороны $AC$ в точке $B_1$ и продолжений сторон $BA$ и $BC$. Оказалось, что $A_1$ лежит на отрезке $NP$. Докажите, что $B_1$ лежит на отрезке $MQ$.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 45]      



Задача 60975  (#06.052)

Тема:   [ Свойства коэффициентов многочлена ]
Сложность: 3+
Классы: 8,9,10

Пусть  P(x) = (2x² – 2x + 1)17(3x² – 3x + 1)17.  Найдите
  a) сумму коэффициентов этого многочлена;
  б) суммы коэффициентов при чётных и нечётных степенях x.

Прислать комментарий     Решение

Задача 60976  (#06.053)

Темы:   [ Теорема Безу. Разложение на множители ]
[ Методы решения задач с параметром ]
Сложность: 3+
Классы: 8,9,10

При каких a и b многочлен  P(x) = (a + b)x5 + abx² + 1  делится на  x² – 3x + 2?

Прислать комментарий     Решение

Задача 60977  (#06.054)

Тема:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
Сложность: 4-
Классы: 8,9,10,11

Кубическое и квадратное уравнения с рациональными коэффициентами имеют общее решение.
Докажите, что у кубического уравнения есть рациональный корень.

Прислать комментарий     Решение

Задача 60978  (#06.055)

Темы:   [ Теорема Безу. Разложение на множители ]
[ Деление многочленов с остатком. НОД и НОК многочленов ]
Сложность: 4-
Классы: 8,9,10,11

Найдите остаток R(x) от деления многочлена  xn + x + 2  на  x² – 1.

Прислать комментарий     Решение

Задача 60979  (#06.056)

Темы:   [ Кубические многочлены ]
[ Теорема Виета ]
Сложность: 3+
Классы: 8,9,10

Один из корней уравнения  x³ – 6x² + ax – 6 = 0  равен 3. Решите уравнение.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 45]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .