|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
год/номер:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Треугольник Паскаля Треугольник Паскаля строится следующим образом. Первая строка состоит из одного числа, равного единице. Каждая следующая содержит на одно число больше, чем предыдущая. Первое и последнее из этих чисел равны 1, а все остальные вычисляются как сумма числа, стоящего в предыдущей строке над ним и числа, стоящего в предыдущей же строке слева от него. Входные данные. В файле INPUT.TXT записано одно число N (0<=N<=30). Выходные данные. В файл OUTPUT.TXT вывести N строк треугольника Паскаля. Примечание. Все числа в треугольнике Паскаля при указанных ограничениях входят в Longint. Пример файла INPUT.TXT 8 Пример файла OUTPUT.TXT 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 371]
Петя и Вася выписывают 12-значное число, ставя цифры по очереди, начиная со старшего разряда. Начинает Петя. Докажите, что какие бы цифры он не писал, Вася всегда сможет добиться, чтобы получившееся число делилось на 9.
Четыре дома расположены по окружности. Где надо вырыть колодец, чтобы сумма расстояний от домов до колодца была наименьшей?
Известно, что число a + 1/a – целое. Докажите, что число a² + 1/a² – тоже целое.
Найти две такие обыкновенные дроби – одну со знаменателем 8, другую со знаменателем 13, чтобы они не были равны, но разность между большей и меньшей из них была как можно меньше.
Известно, что a + b + c = 5 и ab + bc + ac = 5. Чему может равняться a² + b² + c²?
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 371] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|