ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что центр описанной окружности прямоугольного треугольника совпадает с серединой гипотенузы. Замените буквы в слове ТРАНСПОРТИРОВКА цифрами (разным буквам соответствуют разные цифры, а одинаковым одинаковые) так, чтобы выполнялось неравенство Т > Р > А > Н < С < П < О < Р < Т > И > Р > О < В < К < А. Диагонали трапеции ABCD перпендикулярны. Точка M – середина боковой стороны AB, точка N симметрична центру описанной окружности треугольника ABD относительно прямой AD. Докажите, что ∠CMN = 90°. Пусть m и n – целые числа. Докажите, что mn(m + n) – чётное число. Докажите, что если α, β, γ и α1, β1, γ1 – углы двух треугольников, то cos α1/sin α + cos β1/sin β + cos γ1/sin γ ≤ ctg α + ctg β + ctg γ. Яблоко плавает на воде так, что 1/5 часть яблока находится над водой, а 4/5 – под водой. Под водой яблоко начинает есть рыбка со скоростью 120 г/мин., одновременно над водой яблоко начинает есть птичка со скоростью 60 г/мин. Какая часть яблока достанется рыбке, а какая – птичке? Биссектриса угла C и внешнего угла A трапеции ABCD с основаниями BC и AD пересекаются в точке M, а биссектриса угла B и внешнего угла D – в точке N. Докажите, что середина отрезка MN равноудалена от прямых AB и CD. Легко можно разрезать квадрат на два равных треугольника или два равных
четырёхугольника. В прямоугольном треугольнике ABC с прямым углом C провели биссектрисы AK и BN, на которые опустили перпендикуляры CD и CE из вершины прямого угла. Докажите, что длина отрезка DE равна радиусу вписанной окружности. |
Страница: << 1 2 3 4 >> [Всего задач: 18]
Известно, что a + b + c = 5 и ab + bc + ac = 5. Чему может равняться a² + b² + c²?
В узлах клетчатой плоскости отмечено пять точек. Доказать, что есть две из них, середина отрезка между которыми тоже попадает в узел.
Найдите сумму углов при вершинах самопересекающейся пятиконечной звезды.
Верно ли, что из любых 10 отрезков найдутся три, из которых можно составить треугольник?
Квадратная площадь размером 100×100 выложена квадратными плитами 1×1 четырёх цветов: белого, красного, чёрного и серого – так, что никакие две плиты одинакового цвета не соприкасаются друг с другом (то есть не имеют общей стороны или вершины). Сколько может быть красных плит?
Страница: << 1 2 3 4 >> [Всего задач: 18]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке