Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 42]
|
|
Сложность: 3 Классы: 8,9,10
|
Доказать, что при нечётном n > 1 уравнение xn + yn = zn не может иметь решений в целых числах, для которых x + y – простое число.
|
|
Сложность: 3 Классы: 10,11
|
Доказать, что не существует попарно различных натуральных чисел x, y, z, t, для которых было бы справедливо соотношение xx + yy = zz + tt.
Имеется 200 карточек размером 1×2, на каждой из которых написаны числа
+1 и -1. Можно ли так заполнить этими карточками лист
клетчатой бумаги размером
4×100, чтобы произведения чисел в каждом
столбце и каждой строке образовавшейся таблицы были положительны? (Карточка
занимает целиком две соседние клетки.)
Лист клетчатой бумаги размером 5×n заполнен карточками размером
1×2 так, что каждая карточка занимает целиком две соседние клетки. На каждой карточке написаны числа 1 и –1. Известно, что произведения чисел по строкам и столбцам образовавшейся таблицы положительны. При каких n это возможно?
|
|
Сложность: 3+ Классы: 8,9,10
|
Первый член и разность арифметической прогрессии — натуральные числа. Доказать, что
найдётся такой член прогрессии, в записи которого участвует цифра 9.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 42]