|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Туры:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Две окружности радиусов R и r касаются внешним образом (т. е. ни одна из них не лежит внутри другой). Найдите длину общей касательной к этим окружностям. Каждый день, с понедельника по пятницу, ходил старик к синему морю и закидывал в море невод. При этом каждый день в невод попадалось не больше рыбы, чем в предыдущий. Всего за пять дней старик поймал ровно 100 рыбок. Какое наименьшее суммарное количество рыбок он мог поймать за три дня – понедельник, среду и пятницу? |
Страница: 1 2 3 4 5 >> [Всего задач: 23]
175 шалтаев стоят дороже, чем 125 болтаев, но дешевле, чем 126 болтаев. Доказать, что на покупку трёх шалтаев и одного болтая не хватит:
Найти все такие натуральные k, которые можно представить в виде суммы двух взаимно простых чисел, отличных от 1.
Внутри квадрата ABCD взята точка M. Докажите, что точки пересечения медиан треугольников ABM, BCM, CDM и DAM образуют квадрат.
В выпуклом пятиугольнике ABCDE AE = AD, AC = AB и ∠DAC = ∠AEB + ∠ABE.
На сторонах CB и CD квадрата ABCD взяты точки M и K так, что периметр треугольника CMK равен удвоенной
стороне квадрата.
Страница: 1 2 3 4 5 >> [Всего задач: 23] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|