Страница:
<< 2 3 4 5 6
7 8 >> [Всего задач: 40]
|
|
Сложность: 4- Классы: 8,9,10
|
Несколько человек делят наследство. Наследник считается бедным, если ему
досталось меньше 99 рублей, богатым, – если ему досталось больше 10000 рублей. Величина наследства и число людей таковы, что при любом способе дележа у богатых окажется не меньше денег, чем у бедных. Докажите, что при любом способе дележа у богатых не меньше чем в 100 раз больше денег, чем у бедных.
|
|
Сложность: 4- Классы: 8,9,10
|
На доску последовательно записываются натуральные числа. На n-м шаге (когда написаны числа a1, a2, ..., an–1) пишется любое число, которое нельзя представить в виде суммы a1k1 + a2k2 + ... + an–1kn–1, где ki – целые неотрицательные числа (на a1 никаких ограничений не накладывается). Доказать, что процесс написания чисел не может быть бесконечным.
а) В треугольнике ABC угол A больше угла B. Докажите, что
BC > ½ AB.
б) В выпуклом четырёхугольнике ABCD угол A больше угла C, а угол D больше угла B. Докажите, что BC > ½ AD.
В четырёхугольнике ABCD AB = BC = CD = 1, AD не равно 1. Положение точек B и C фиксировано, точки же A и D подвергаются преобразованиям, сохраняющим длины отрезков AB, CD и AD. Новое положение точки A получается из старого зеркальным
отражением в отрезке BD, новое положение точки D получается из старого зеркальным отражением в отрезке AC (где A уже новое), затем на втором шагу опять A отражается относительно BD (D уже новое), затем снова преобразуется D, затем аналогично проводится третий шаг, и так далее. Докажите, что на каком-то шагу положение точек совпадает с первоначальным.
|
|
Сложность: 4 Классы: 8,9,10
|
Числовая последовательность определяется условиями:
Докажите, что среди членов этой последовательности бесконечно много полных
квадратов.
Страница:
<< 2 3 4 5 6
7 8 >> [Всего задач: 40]