Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 56]
Задача
109918
(#97.4.9.8)
|
|
Сложность: 4 Классы: 8,9,10
|
а) В городе Мехико для ограничения транспортного потока для каждой частной автомашины устанавливаются два дня недели, в которые она не может выезжать на улицы города. Семье требуется каждый день иметь в распоряжении не менее десяти машин. Каким наименьшим количеством машин может обойтись семья, если её члены могут сами выбирать запрещенные дни для своих автомобилей?
б) В Мехико для каждой частной автомашины устанавливается один день в неделю, в который она не может выезжать на улицы города. Состоятельная семья из десяти человек подкупила полицию, и для каждой машины они называют два дня, один из которых полиция выбирает в качестве невыездного дня. Какое наименьшее количество
машин нужно купить семье, чтобы каждый день каждый член семьи мог
самостоятельно ездить, если утверждение невыездных дней для автомобилей идёт последовательно?
Задача
109913
(#97.4.10.1)
|
|
Сложность: 4- Классы: 8,9,10
|
Микрокалькулятор МК-97 умеет над числами, занесенными в память, производить только три операции:
1) проверять, равны ли выбранные два числа,
2) складывать выбранные числа,
3) по выбранным числам a и b находить корни уравнения x² + ax + b = 0, а если корней нет, выдавать сообщение об этом.
Результаты всех действий заносятся в память. Первоначально в памяти записано одно число x. Как с помощью МК-97 узнать, равно ли это число единице?
Задача
108179
(#97.4.10.2)
|
|
Сложность: 4- Классы: 8,9
|
Окружности S1 и S2 пересекаются в точках M и N. Докажите, что если вершины A и C некоторого прямоугольника ABCD лежат на окружности S1, а вершины B и D – на окружности S2, то точка пересечения диагоналей прямоугольника лежит на прямой MN.
Задача
109915
(#97.4.10.3)
|
|
Сложность: 4 Классы: 8,9,10
|
Даны натуральные числа m и n. Докажите, что число 2n – 1 делится на число (2m – 1)² тогда и только тогда, когда число n делится на число m(2m – 1).
Задача
109916
(#97.4.10.4)
|
|
Сложность: 4 Классы: 8,9,10
|
Дан куб со стороной 4. Можно ли целиком оклеить три его грани, имеющие общую вершину, 16 бумажными прямоугольными полосками размером 1×3?
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 56]