ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 109681  (#98.5.9.6)

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Биссектриса угла ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Средняя линия треугольника ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 4
Классы: 7,8,9

Автор: Сонкин М.

В треугольнике ABC  (AB > BC)  проведены медиана BM и биссектриса BL. Прямая, проходящая через точку M параллельно AB, пересекает BL в точке D, а прямая, проходящая через L параллельно BC, пересекает BM в точке E. Докажите, что прямые ED и BL перпендикулярны.

Прислать комментарий     Решение

Задача 109682  (#98.5.9.7)

Темы:   [ Разбиения на пары и группы; биекции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5
Классы: 8,9,10

Ювелир сделал незамкнутую цепочку из N>3 пронумерованных звеньев. Капризная заказчица потребовала изменить порядок звеньев в цепочке. Из вредности она заказала такую незамкнутую цепочку, чтобы ювелиру пришлось раскрыть как можно больше звеньев. Сколько звеньев придется раскрыть?
Прислать комментарий     Решение


Задача 109683  (#98.5.9.8)

Темы:   [ Алгоритм Евклида ]
[ Процессы и операции ]
Сложность: 4
Классы: 7,8,9

На доске написаны два различных натуральных числа a и b. Меньшее из них стирают, и вместо него пишут число    (которое может уже оказаться нецелым). С полученной парой чисел делают ту же операцию и т.д. Докажите, что в некоторый момент на доске окажутся два равных натуральных числа.

Прислать комментарий     Решение

Задача 109668  (#98.5.10.1)

Темы:   [ Теорема Виета ]
[ Графики и ГМТ на координатной плоскости ]
[ Кубические многочлены ]
Сложность: 4-
Классы: 9,10,11

Прямые, параллельные оси Ox, пересекают график функции  y = ax³ + bx² + cx + d:  первая – в точках A, D и E, вторая – в точках B, C и F (см. рис.). Докажите, что длина проекции дуги CD на ось Ox равна сумме длин проекций дуг AB и EF.

Прислать комментарий     Решение

Задача 109669  (#98.5.10.2)

Темы:   [ Выпуклые многоугольники ]
[ Наименьший или наибольший угол ]
[ Длины сторон (неравенства) ]
[ Теорема косинусов ]
Сложность: 5-
Классы: 9,10,11

Даны два выпуклых многоугольника. Известно, что расстояние между любыми двумя вершинами первого не больше 1 , расстояние между любыми двумя вершинами второго также не больше 1, а расстояние между любыми двумя вершинами разных многоугольников больше, чем 1/ . Докажите, что многоугольники не имеют общих внутренних точек.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .