Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 48]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Дан треугольник ABC. Из вершин B и C опущены перпендикуляры BM и CN на биссектрисы углов C и B соответственно.
Докажите, что прямая MN пересекает стороны AC и AB в точках их касания с вписанной окружностью.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Многоугольник можно разрезать на две равные части тремя различными способами.
Верно ли, что у него обязательно есть центр или ось симметрии?
|
|
Сложность: 4- Классы: 8,9,10,11
|
На плоскости задано n точек, являющихся вершинами выпуклого n-угольника, n > 3. Известно, что существует ровно k равносторонних треугольников со стороной 1, вершины которых – заданные точки.
а) Докажите, что k < 2n/3.
б) Приведите пример конфигурации, для которой k > 0,666n.
Задача
115866
(#10)
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Пусть ABC – остроугольный треугольник, CC1 – его биссектриса, O – центр описанной окружности. Точка пересечения прямой OC1 с перпендикуляром, опущенным из вершины C на сторону AB, лежит на описанной окружности Ω треугольника AOB. Найдите угол C.
Задача
115867
(#11)
|
|
Сложность: 4- Классы: 8,9,10,11
|
Дан четырёхугольник ABCD. Оказалось, что описанная окружность треугольника ABC, касается стороны CD, а описанная окружность треугольника ACD касается стороны AB. Докажите, что диагональ AC меньше, чем расстояние между серединами сторон AB и CD.
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 48]