Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 48]
Задача
115896
(#8.8)
|
|
Сложность: 4 Классы: 8,9,10,11
|
Вписанная и вневписанная окружности треугольника ABC касаются стороны BC в точках M и N. Известно, что ∠BAC = 2∠MAN.
Докажите, что BC = 2MN.
Задача
115897
(#9.1)
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Середина стороны треугольника и основание высоты, проведённой к этой стороне, симметричны относительно точки касания этой стороны с вписанной окружностью.
Докажите, что эта сторона составляет треть периметра треугольника.
Задача
115898
(#9.2)
|
|
Сложность: 4- Классы: 8,9,10,11
|
Дан выпуклый четырёхугольник ABCD. Обозначим через Ra, Rb, Rc и Rd радиусы описанных окружностей треугольников DAB, ABC, BCD, CDA. Докажите, что неравенство Ra < Rb < Rc < Rd выполняется тогда и только тогда, когда 180° – ∠CDB < ∠CAB < ∠CDB.
Задача
115899
(#9.3)
|
|
Сложность: 4 Классы: 8,9,10,11
|
Четырёхугольник ABCD описан около окружности, лучи BA и CD пересекаются в точке E, лучи BC и AD – в
точке F. Вписанная окружность треугольника, образованного прямыми AB, CD и биссектрисой угла B, касается прямой AB в точке K, а вписанная окружность треугольника, образованного прямыми AD, BC и биссектрисой угла B, касается прямой BC в точке L. Докажите, что прямые KL, AC и EF пересекаются в одной точке.
Задача
115900
(#9.4)
|
|
Сложность: 5- Классы: 8,9,10,11
|
Дан правильный 17-угольник A1... A17. Докажите, что треугольники, образованные прямыми A1A4, A2A10, A13A14 и A2A3, A4A6, A14A15, равны.
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 48]