Страница: 1
2 >> [Всего задач: 8]
Задача
115864
(#10.8)
|
|
Сложность: 4 Классы: 8,9,10,11
|
Можно ли вписать октаэдр в додекаэдр так, чтобы каждая вершина октаэдра была вершиной додекаэдра?
Задача
115863
(#10.7)
|
|
Сложность: 4 Классы: 8,9,10,11
|
Дано множество точек O, A1, A2, ..., An на плоскости. Расстояние между любыми двумя из этих точек является квадратным корнем из натурального числа. Докажите, что существуют
такие векторы x и y, что для любой точки Ai выполняется равенство где k и l – некоторые целые числа.
Задача
115862
(#10.6)
|
|
Сложность: 4 Классы: 8,9,10,11
|
В треугольнике ABC M – точка пересечения медиан, I – центр вписанной окружности, A1 и B1 – точки касания этой окружности со сторонами BC и AC, G – точка пересечения прямых AA1 и BB1. Докажите, что угол CGI прямой тогда и только тогда, когда GM || AB.
Задача
115861
(#10.5)
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В треугольник ABC вписан ромб CKLN так, что точка L лежит на стороне AB, точка N – на стороне AC, точка K – на стороне BC. Пусть O1, O2 и O – центры описанных окружностей треугольников ACL, BCL и ABC соответственно. Пусть P – точка пересечения описанных
окружностей треугольников ANL и BKL, отличная от L. Докажите, что точки O1, O2, O и P лежат на одной окружности.
Задача
115860
(#10.4)
|
|
Сложность: 5- Классы: 8,9,10,11
|
Через вершины треугольника ABC проводятся три произвольные параллельные прямые da, db, dc. Прямые, симметричные da, db, dc относительно BC, CA, AB соответственно, образуют треугольник XYZ. Найдите геометрическое место центров вписанных окружностей таких треугольников.
Страница: 1
2 >> [Всего задач: 8]