ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 115902  (#9.6)

Темы:   [ Две пары подобных треугольников ]
[ Симметрия помогает решить задачу ]
[ Длины сторон, высот, медиан и биссектрис ]
Сложность: 4-
Классы: 8,9,10,11

В треугольнике ABC  AB – BC = .  Пусть M – середина стороны AC, а BN – биссектриса.  Докажите, что  ∠BMC + ∠BNC = 90°.

Прислать комментарий     Решение

Задача 115903  (#9.7)

Темы:   [ Пересекающиеся окружности ]
[ Окружности (построения) ]
[ Экстремальные свойства треугольника (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

Даны две пересекающиеся окружности с центрами O1, O2. Постройте окружность, касающуюся одной из них внешним, а другой внутренним образом, центр которой удален от прямой O1O2 на наибольшее расстояние.

Прислать комментарий     Решение

Задача 115904  (#9.8)

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Окружности, вписанные в сегмент ]
[ Симметрия помогает решить задачу ]
Сложность: 4
Классы: 8,9,10,11

Дан вписанный четырёхугольник ABCD. Известно, что четыре окружности, каждая из которых касается его диагоналей и описанной окружности изнутри, равны. Верно ли, что ABCD – квадрат?

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .