ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 >> [Всего задач: 12]      



Задача 64335

Темы:   [ Вписанные и описанные окружности ]
[ Углы между биссектрисами ]
Сложность: 4-
Классы: 8,9

Дан треугольник ABC. На продолжениях сторон AB и CB за точку B взяты соответственно точки C1 и A1 так, что  AC = A1C = AC1.
Докажите, что описанные окружности треугольников ABA1 и CBC1 пересекаются на биссектрисе угла B.

Прислать комментарий     Решение

Задача 64340

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Площадь и ортогональная проекция ]
[ Площадь. Одна фигура лежит внутри другой ]
Сложность: 4-
Классы: 10,11

Существует ли многогранник, у которого отношение площадей любых двух граней не меньше 2?

Прислать комментарий     Решение

Задача 64341

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Подобные треугольники (прочее) ]
[ Векторы помогают решить задачу ]
Сложность: 4-
Классы: 10,11

На сторонах четырёхугольника ABCD с перпендикулярными диагоналями во внешнюю сторону построены подобные треугольники ABM, CBP, CDL и ADK (соседние ориентированы по-разному). Докажите, что  PK = ML.

Прислать комментарий     Решение

Задача 64336

Темы:   [ Треугольники с углами 60╟ и 120╟ ]
[ Ортоцентр и ортотреугольник ]
[ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанный угол равен половине центрального ]
[ Прямоугольный треугольник с углом в 30╟ ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 8,9

В треугольнике ABC:  ∠C = 60°,  ∠A = 45°.  Пусть M – середина BC, H – ортоцентр треугольника ABC.
Докажите, что прямая MH проходит через середину дуги AB описанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 64337

Темы:   [ Вписанные и описанные окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Ортогональная (прямоугольная) проекция ]
[ Вписанный угол, опирающийся на диаметр ]
[ Теорема синусов ]
Сложность: 4+
Классы: 8,9

Автор: Зайцева Ю.

Дан треугольник ABC. На его сторонах AB и BC зафиксированы точки C1 и A1 соответственно. Найдите на описанной окружности треугольника ABC такую точку P, что расстояние между центрами описанных окружностей треугольников APC1 и CPA1 минимально.

Прислать комментарий     Решение

Страница: << 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .