Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 49]
Задача
64735
(#9.2)
|
|
Сложность: 3 Классы: 9,10
|
Два треугольника пересекаются. Докажите, что внутри описанной окружности одного из них лежит хотя бы одна вершина другого. (Треугольником считается часть плоскости, ограниченная замкнутой трёхзвенной ломаной; точка, лежащая на окружности, считается лежащей внутри неё.)
Задача
64743
(#10.2)
|
|
Сложность: 3+ Классы: 10,11
|
Каждая из двух равных окружностей ω1 и ω2 проходит через центр другой. Треугольник ABC вписан в ω1, а прямые AC, BC касаются ω2.
Докажите, что cos∠A + cos∠B = 1.
Задача
65003
(#2)
|
|
Сложность: 3+ Классы: 8,9
|
В прямоугольном треугольнике ABC (∠C = 90°) биссектрисы AA1 и BB1 пересекаются в точке I. Пусть O – центр описанной окружности треугольника CA1B1. Докажите, что OI ⊥ AB.
Задача
64701
(#8.3)
|
|
Сложность: 4- Классы: 8,9
|
В выпуклом четырёхугольнике ABCD лучи AB и DC пересекаются в точке K. На биссектрисе угла AKD нашлась такая точка P, что прямые BP и CP делят пополам отрезки AC и BD соответственно. Докажите, что AB = CD.
Задача
64736
(#9.3)
|
|
Сложность: 4- Классы: 9,10
|
На прямой лежат точки X, Y, Z (именно в таком порядке). Треугольники XAB, YBC, ZCD – правильные, причём вершины первого и третьего ориентированы против часовой стрелки, а второго по часовой стрелке. Докажите, что прямые AC, BD и XY пересекаются в одной точке.
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 49]