Страница:
<< 1 2 3
4 5 >> [Всего задач: 24]
Задача
64874
(#11)
|
|
Сложность: 4- Классы: 8,9,10
|
Точки K, L, M и N на сторонах AB, BC, CD и DA квадрата ABCD образуют еще один квадрат. DK пересекает NM в точке E, а KC пересекает LM в точке F.
Докажите, что EF || AB.
Задача
64875
(#12)
|
|
Сложность: 3+ Классы: 9,10,11
|
Окружности ω1 и ω2 пересекаются в точках A и B. Точки K1 и K2 на ω1 и ω2 соответственно таковы, что K1A касается ω2, а K2A касается ω1. Описанная окружность треугольника K1BK2 пересекает вторично прямые AK1 и AK2 в точках L1 и L2 соответственно. Докажите, что точки L1 и L2 равноудалены от прямой AB.
Задача
64876
(#13)
|
|
Сложность: 4- Классы: 9,10,11
|
На окружности ω c центром O фиксированы точки A и C. Точка B движется по дуге AC. Точка P – фиксированная точка хорды AC. Прямая, проходящая через P параллельно AO, пересекает прямую BA в точке A1; прямая, проходящая через P параллельно CO, пересекает прямую BC в точке C1. Докажите, что центр описанной окружности треугольника A1BC1 движется по прямой.
Задача
64877
(#14)
|
|
Сложность: 4 Классы: 9,10,11
|
Постройте такое подмножество круга, площадью в половину площади круга, что его образ при симметрии относительно любого диаметра пересекается с ним по площади, равной четверти круга.
Задача
64878
(#15)
|
|
Сложность: 4 Классы: 9,10,11
|
В неравнобедренном треугольнике ABC высота из вершины A, биссектриса из вершины B и медиана из вершины C пересекаются в одной точке K.
а) Какая из сторон треугольника средняя по величине?
б) Какой из отрезков AK, BK, CK средний по величине?
Страница:
<< 1 2 3
4 5 >> [Всего задач: 24]