ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Выпуклый четырёхугольник разбит диагоналями на четыре треугольника, площади которых выражаются целыми числами.
Докажите, что произведение этих чисел не может оканчиваться на 1988.

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 48]      



Задача 65794  (#6)

Темы:   [ Вписанные и описанные окружности ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 3+
Классы: 8,9

Из середины M стороны AC треугольника ABC опущены перпендикуляры MD и ME на стороны AB и BC соответственно. Около треугольников ABE и BCD описаны окружности. Докажите, что расстояние между центрами этих окружностей равно AC/4.

Прислать комментарий     Решение

Задача 66257  (#8.6)

Темы:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Вписанный угол, опирающийся на диаметр ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

В треугольнике ABC  ∠A = 60°,  точки M и N на сторонах AB и AC соответственно таковы, что центр описанной окружности треугольника ABC делит отрезок MN пополам. Найдите отношение  AN : MB.

Прислать комментарий     Решение

Задача 66265  (#9.6)

Темы:   [ Замечательное свойство трапеции ]
[ Гомотетия помогает решить задачу ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Углы между биссектрисами ]
Сложность: 3+
Классы: 8,9,10

Автор: Тимохин М.

Продолжения боковых сторон трапеции ABCD пересекаются в точке P, а её диагонали – в точке Q. Точка M на меньшем основании BC такова, что  AM = MD.  Докажите, что  ∠PMB = ∠QMB.

Прислать комментарий     Решение

Задача 66273  (#10.6)

Темы:   [ Вписанные и описанные окружности ]
[ Три точки, лежащие на одной прямой ]
[ Вспомогательные подобные треугольники ]
[ Теоремы Чевы и Менелая ]
[ Проективные преобразования прямой ]
Сложность: 4
Классы: 9,10,11

Дан треугольник ABC. Точка K – основание биссектрисы внешнего угла A. Точка M – середина дуги AC описанной окружности. Точка N выбрана на биссектрисе угла C так, что  AN || BM.  Докажите, что точки M, N и K лежат на одной прямой.

Прислать комментарий     Решение

Задача 65795  (#7)

Темы:   [ Выпуклые многоугольники ]
[ Примеры и контрпримеры. Конструкции ]
[ Полуинварианты ]
[ Против большей стороны лежит больший угол ]
[ Неравенство треугольника (прочее) ]
Сложность: 4
Классы: 9,10

В некотором выпуклом n-угольнике  (n > 3)  все расстояния между вершинами различны.
  а) Назовём вершину неинтересной, если самая близкая к ней вершина – соседняя с ней. Каково наименьшее возможное количество неинтересных вершин (при данном n)?
  б) Назовём вершину необычной, если самая дальняя от неё вершина – соседняя с ней. Каково наибольшее возможное количество необычных вершин (при данном n)?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .