ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 48]      



Задача 66258  (#8.7)

Темы:   [ Четырехугольники (прочее) ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Биссектриса угла (ГМТ) ]
[ Углы между биссектрисами ]
Сложность: 4-
Классы: 8,9

Диагонали четырёхугольника ABCD равны и пересекаются в точке O. Серединные перпендикуляры к сторонам AB и CD пересекаются в точке P, а серединные перпендикуляры к сторонам BC и AD – в точке Q. Найдите угол POQ.

Прислать комментарий     Решение

Задача 66266  (#9.7)

Темы:   [ Неравенства с высотами ]
[ Неравенства с биссектрисами ]
Сложность: 4-
Классы: 8,9,10

Из высот остроугольного треугольника можно составить треугольник. Докажите, что из его биссектрис тоже можно составить треугольник.

Прислать комментарий     Решение

Задача 66274  (#10.7)

Темы:   [ Построение треугольников по различным точкам ]
[ Вписанные и описанные окружности ]
[ Точка Лемуана ]
[ Проективные преобразования плоскости ]
[ Применение проективных преобразований прямой в задачах на построение ]
[ Инверсия помогает решить задачу ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4+
Классы: 9,10

Постройте треугольник по вершине A, центру O описанной окружности и точке Лемуана L.

Прислать комментарий     Решение

Задача 65796  (#8)

Темы:   [ Пятиугольники ]
[ Вписанные и описанные многоугольники ]
[ Связь величины угла с длиной дуги и хорды ]
Сложность: 3
Классы: 8,9

Пятиугольник ABCDE вписан в окружность, причём  ∠B + ∠E = ∠C + ∠D.  Докажите, что  ∠CAD < π/3 < ∠A.

Прислать комментарий     Решение

Задача 66259  (#8.8)

Темы:   [ Вписанные и описанные окружности ]
[ Процессы и операции ]
[ Полуинварианты ]
[ ГМТ - прямая или отрезок ]
Сложность: 4+
Классы: 8,9

В точке X сидит преступник, а три полицейских, находящихся в точках A, B и C, блокируют его, то есть точка X лежит внутри треугольника ABC. Новый полицейский сменяет одного из них следующим образом: он занимает точку, равноудаленную от всех трёх полицейских, после чего один из троих уходит, и оставшаяся тройка по-прежнему блокирует преступника. Так происходит каждый вечер. Может ли случиться, что через какое-то время полицейские вновь займут точки A, B и C (известно, что точка X ни разу не попала на сторону треугольника)?

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .