ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



Задача 66553  (#4)

Темы:   [ Турниры и турнирные таблицы ]
[ Принцип Дирихле ]
Сложность: 4
Классы: 8

В турнире по гандболу участвуют 20 команд. После того как каждая команда сыграла с каждой по разу, оказалось, что количество очков у всех команд разное. После того как каждая команда сыграла с каждой по второму разу, количество очков у всех команд стало одинаковым. В гандболе за победу команда получает 2 очка, за ничью 1 очко, за поражение — 0 очков. Верно ли, что найдутся две команды, по разу выигравшие друг у друга?
Прислать комментарий     Решение


Задача 66559  (#4)

Тема:   [ Треугольники (прочее) ]
Сложность: 4
Классы: 8,9,10

Автор: Соколов А.

В остроугольном треугольнике $ABC$ ($AB$<$BC$) провели высоту $BH$. Точка $P$ симметрична точке $H$ относительно прямой, соединяющей середины сторон $AC$ и $BC$. Докажите, что прямая $BP$ содержит центр описанной окружности треугольника $ABC$.
Прислать комментарий     Решение


Задача 66565  (#4)

Тема:   [ Вписанные и описанные окружности ]
Сложность: 4
Классы: 9,10,11

Автор: Соколов А.

Точка $O$ — центр описанной окружности треугольника $ABC$. Серединный перпендикуляр к $BC$ пересекает $AB$ и $AC$ в точках $X$ и $Y$. Прямая $AO$ пересекает прямую $BC$ в точке $D$, $M$ — середина $BC$. Описанная окружность треугольника $ADM$ пересекает описанную окружность треугольника $ABC$ в точке $E$, отличной от $A$. Докажите, что прямая $OE$ касается описанной окружности треугольника $AXY$.
Прислать комментарий     Решение


Задача 66571  (#4)

Темы:   [ Замощения костями домино и плитками ]
[ Разрезания, разбиения, покрытия и замощения ]
Сложность: 3
Классы: 9,10,11

Из шахматной доски $8\times8$ вырезали 10 клеток. Известно, что среди вырезанных клеток есть как черные, так и белые. Какое наибольшее количество двухклеточных прямоугольников можно после этого гарантированно вырезать из этой доски?
Прислать комментарий     Решение


Задача 66577  (#4)

Темы:   [ Треугольники (прочее) ]
[ Планиметрия (прочее) ]
Сложность: 4
Классы: 9,10,11

На стороне $AC$ треугольника $ABC$ взяли такую точку $D$, что угол $BDC$ равен углу $ABC$. Чему равно наименьшее возможное расстояние между центрами окружностей, описанных около треугольников $ABC$ и $ABD$, если $BC = 1$?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .