Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 [Всего задач: 48]      



Задача 66983  (#10.6)

Темы:   [ Симметрия помогает решить задачу ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 3+
Классы: 9,10,11

Продолжения боковых сторон AB и CD трапеции ABCD пересекаются в точке S. Точки X, Y на биссектрисе угла S таковы, что AXCAYC=ASC. Докажите, что BXDBYD=BSD.
Прислать комментарий     Решение


Задача 66982  (#10.7)

Темы:   [ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Теоремы Чевы и Менелая ]
[ Прямая Эйлера и окружность девяти точек ]
[ Гомотетия помогает решить задачу ]
Сложность: 5
Классы: 9,10,11

Автор: Mahdi Etesami Fard

В прямоугольном треугольнике ABC I – центр вписанной окружности, M – середина гипотенузы AB. Касательная к описанной окружности треугольника ABC в точке C пересекает прямую, проходящую через I и параллельную AB, в точке P. Точка H – ортоцентр треугольника PAB. Докажите, что точка пересечения прямых CH и PM лежит на вписанной окружности треугольника ABC.
Прислать комментарий     Решение


Задача 66984  (#10.8)

Темы:   [ ГМТ с ненулевой площадью ]
[ Признаки и свойства касательной ]
[ Теория алгоритмов (прочее) ]
[ Векторы помогают решить задачу ]
[ Гомотетия помогает решить задачу ]
Сложность: 5
Классы: 10,11

Автор: Дидин М.

На аттракционе «Весёлая парковка» у машинки только 2 положения руля: «вправо» и «совсем вправо». В зависимости от положения руля, машинка едет по дуге радиуса r1 или r2. Машинка выехала из точки A на север и проехала расстояние l, повернув при этом на угол α<2π. Где она могла оказаться (найдите ГМТ – концов возможных траекторий)?
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .