ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



Задача 67101  (#16 [9-11 кл])

Темы:   [ Вспомогательные подобные треугольники ]
[ Четыре точки, лежащие на одной окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 3
Классы: 8,9,10,11

Дан вписанный четырехугольник $ABCD$. Пусть $E=AC\cap BD$, $F=AD\cap BC$. Биссектрисы углов $AFB$ и $AEB$ пересекают $CD$ в точках $X, Y$. Докажите, что точки $A, B, X, Y$ лежат на одной окружности.
Прислать комментарий     Решение


Задача 67102  (#17 [9-11 кл])

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Изогональное сопряжение ]
[ Теорема Паскаля ]
Сложность: 4+
Классы: 9,10,11

В треугольнике $ABC$ выбрана точка $P$. Лучи с началом в точке $P$, пересекающие под прямым углом стороны $BC$, $AC$, $AB$, пересекают описанную окружность в точках $A_1$, $B_1$, $C_1$ соответственно. Оказалось, что прямые $AA_1$, $BB_1$ и $CC_1$ пересекаются в одной точке $Q$. Докажите, что все такие прямые $PQ$ пересекаются в одной точке.
Прислать комментарий     Решение


Задача 67103  (#18 [10-11 кл])

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Прямые, касающиеся окружностей (прочее) ]
[ Две касательные, проведенные из одной точки ]
[ Теорема синусов ]
Сложность: 3+
Классы: 9,10,11

Во вписанном четырехугольнике $ABCD$ произведения противоположных сторон равны. Точка $B'$ симметрична $B$ относительно прямой $AC$. Докажите, что окружность, проходящая через точки $A$, $B'$, $D$, касается прямой $AC$.
Прислать комментарий     Решение


Задача 67104  (#19 [10-11 кл])

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Решение задач при помощи аффинных преобразований ]
Сложность: 4
Классы: 9,10,11

Автор: Дидин М.

Пусть $I$ – центр вписанной окружности треугольника $ABC$, а $K$ – точка пересечения $BC$ с внешней биссектрисой угла $A$. Прямая $KI$ пересекает внешние биссектрисы углов $B$ и $C$ в точках $X$ и $Y$. Докажите, что $\angle BAX=\angle CAY$.
Прислать комментарий     Решение


Задача 67105  (#20 [10-11 кл])

Темы:   [ Вписанные и описанные окружности ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Проекция на прямую (прочее) ]
[ Гомотетия помогает решить задачу ]
[ Радикальная ось ]
Сложность: 4+
Классы: 9,10,11

Пусть $O$, $I$ – центры описанной и вписанной окружностей треугольника $ABC$; $R$, $r$ – их радиусы; $D$ – точка касания вписанной окружности со стороной $BC$; $N$ – произвольная точка на отрезке $ID$. Перпендикуляр к $ID$ в точке $N$ пересекает описанную окружность $ABC$ в точках $X$ и $Y$. Пусть $O_1$ – центр описанной окружности $XIY$. Найдите произведение $OO_1\cdot IN$.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .