Страница: 1
2 >> [Всего задач: 7]
Задача
67484
(#1)
|
|
Сложность: 3 Классы: 7,8,9,10
|
Барон Мюнхгаузен взял несколько карточек и написал на каждой по натуральному числу (числа могут повторяться). Барон утверждает, что использовал только две различные цифры, зато когда он для каждой пары карточек нашёл сумму чисел на них, то среди первых цифр этих сумм встретились все цифры от 1 до 9. Могут ли слова барона быть правдой?
Задача
67485
(#2)
|
|
Сложность: 3+ Классы: 7,8,9,10
|
Петя и Вася по очереди проводят дороги на плоскости, начинает Петя. Дорога — это горизонтальная или вертикальная прямая, по которой можно двигаться только в одну сторону (выбранную при создании дороги). Всегда ли Вася может действовать так, чтобы после любого его хода можно было проехать по правилам от любого перекрёстка дорог до любого другого, как бы ни действовал Петя?
Задача
67486
(#3)
|
|
Сложность: 4- Классы: 8,9,10,11
|
В остроугольном треугольнике $ABC$ отмечены точки $I$ и $O$ — центры вписанной и описанной окружностей соответственно. Прямые $AI$ и $CI$ вторично пересекают описанную окружность треугольника $ABC$ в точках $N$ и $M$. Отрезки $MN$ и $BO$ пересекаются в точке $X$. Докажите, что прямые $XI$ и $AC$ перпендикулярны.

Задача
67487
(#4)
|
|
Сложность: 3+ Классы: 8,9,10,11
|
У 10 детей есть несколько мешков с конфетами. Дети начинают делить конфеты между собой. Каждый по очереди забирает из каждого мешка свою долю и уходит. Доля вычисляется так: делим текущее число конфет в каждом мешке на число оставшихся детей (включая себя), если нацело не поделилось — округляем до целого в меньшую сторону. Может ли всем достаться разное количество конфет,
а) если мешков всего 8;
б) если мешков всего 9?
Задача
67488
(#5)
|
|
Сложность: 3+ Классы: 8,9,10,11
|
На каждой стороне выпуклого многоугольника построили треугольник, третья вершина которого — пересечение биссектрис двух углов многоугольника, примыкающих к этой стороне. Докажите, что вместе эти треугольники покрывают весь многоугольник.
Страница: 1
2 >> [Всего задач: 7]