Страница: 1
2 >> [Всего задач: 6]
Задача
67517
(#1)
|
|
Сложность: 3+ Классы: 8,9,10,11
|
На плоскости расположены круг и правильный 100-угольник, имеющие одинаковые площади. Какое наибольшее количество вершин 100-угольника может находиться внутри круга (не на границе)?
Задача
67518
(#2)
|
|
Сложность: 5 Классы: 8,9,10,11
|
Дано натуральное число $n$. Натуральное число $m$ назовём
удачным, если найдутся $m$ последовательных натуральных чисел, сумма которых равна сумме $n$ следующих за ними натуральных чисел. Докажите, что количество удачных чисел нечётно.
Задача
67519
(#3)
|
|
Сложность: 4 Классы: 8,9,10,11
|
Пусть $A$ — набор из $n>1$ различных натуральных чисел. Для каждой пары чисел $a,b\in A$, где $a < b$, подсчитаем, сколько чисел в $A$ являются делителями числа $b-a$.
Какое наибольшее значение может принимать сумма полученных $\frac{n(n-1)}2$ чисел?
Задача
67520
(#4)
|
|
Сложность: 4 Классы: 9,10,11
|
В трёхмерном координатном пространстве рассмотрим множество всех кубов с целочисленными координатами вершин. Докажите, что в этом множестве существует такое бесконечное подмножество $K$, что любые два разных куба из $K$ не имеют параллельных рёбер.
Задача
67521
(#5)
|
|
Сложность: 4+ Классы: 8,9,10,11
|
По кругу стоит 99 тарелок, на них лежат булочки (на тарелке может быть любое число булочек или вовсе их не быть).
Известно, что на любых 20 подряд идущих тарелках лежит суммарно хотя бы $k$ булочек.
При этом ни одну булочку ни с одной тарелки нельзя убрать так, чтобы это условие не нарушилось.
Какое наибольшее суммарное число булочек может лежать на тарелках?
Страница: 1
2 >> [Всего задач: 6]