Страница:
<< 1 2
3 4 5 6 >> [Всего задач: 29]
Задача
67448
(#6)
|
|
Сложность: 4 Классы: 7,8,9,10,11
|
Правильный треугольник разрезан на треугольники, каждый из которых либо прямоугольный, либо равнобедренный. Все прямоугольные треугольники равны друг другу, все равнобедренные – тоже. Обязательно ли все углы равнобедренных треугольников кратны $30^\circ$?
Задача
67449
(#1)
|
|
Сложность: 3 Классы: 7,8,9,10,11
|
Можно ли расставить девять различных целых чисел в клетки таблицы $3 \times 3$ так, чтобы произведение чисел в каждой строке равнялось $2025$ и произведение чисел в каждом столбце тоже равнялось $2025$?
Задача
67450
(#2)
|
|
Сложность: 3 Классы: 8,9,10,11
|
Можно ли на бесконечной клетчатой плоскости расставить бесконечное количество шахматных коней (не более одного коня в клетку) так, чтобы каждый конь бил ровно 6 других?
Задача
67451
(#3)
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В треугольнике $ABC$ с прямым углом $C$ провели высоту $CH$. Окружность, проходящая через точки $C$ и $H$, повторно пересекает отрезки $AC$, $CB$ и $BH$ в точках $Q$, $P$ и $R$ соответственно. Отрезки $HP$ и $CR$ пересекаются в точке $T$. Что больше: площадь треугольника $CPT$ или сумма площадей треугольников $CQH$ и $HTR$?

Задача
67452
(#4)
|
|
Сложность: 4 Классы: 7,8,9,10,11
|
Каждая клетка квадрата $100\times 100$ покрашена либо в белый, либо в чёрный цвет. Оказалось, что у каждой белой клетки ровно две соседних с ней по стороне клетки покрашены в белый цвет, а у каждой чёрной клетки ровно две соседних с ней по стороне клетки покрашены в чёрный цвет. Найдите максимальное возможное количество чёрных клеток.
Страница:
<< 1 2
3 4 5 6 >> [Всего задач: 29]