ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 >> [Всего задач: 16]      



Задача 108589

Темы:   [ Неравенства для площади треугольника ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3
Классы: 8,9

Докажите, что для произвольного треугольника справедливо неравенство R· P 4S , где R – радиус окружности, описанной около треугольника, P и S – периметр и площадь треугольника.
Прислать комментарий     Решение


Задача 98455

Темы:   [ Неравенства для площади треугольника ]
[ Площадь треугольника (через высоту и основание) ]
[ Монотонность, ограниченность ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 3+
Классы: 8,9

Пусть ABC – остроугольный треугольник, C' и A' – произвольные точки на сторонах AB и BC соответственно, B' – середина стороны AC.
  а) Докажите, что площадь треугольника A'B'C' не больше половины площади треугольника ABC.
  б) Докажите, что площадь треугольника A'B'C' равна четверти площади треугольника ABC тогда и только тогда, когда хотя бы одна из точек A', C' совпадает с серединой соответствующей стороны.

Прислать комментарий     Решение

Задача 57463

Темы:   [ Неравенства для площади треугольника ]
[ Формула Герона ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 8,9

Докажите, что:
  а)  

  б)  
Прислать комментарий     Решение


Задача 116163

Тема:   [ Неравенства для площади треугольника ]
Сложность: 4-
Классы: 10,11

Докажите, что любой жесткий плоский треугольник T площади меньше 4 можно просунуть сквозь треугольную дырку Q площади 3.

Прислать комментарий     Решение

Задача 116297

Тема:   [ Неравенства для площади треугольника ]
Сложность: 4
Классы: 8,9

Каждая сторона треугольника больше 100. Может ли его площадь быть меньше 0,01?
Прислать комментарий     Решение


Страница: 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .