|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Биссектриса внутреннего угла при вершине A и биссектриса внешнего угла при вершине C треугольника ABC пересекаются в точке M. Основание H высоты SH треугольной пирамиды SABC принадлежит грани ABC , SH = Для любого натурального числа n существует составленное из цифр 1 и 2 число, делящееся на 2n. Докажите это. |
Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 306]
Диагонали выпуклого четырёхугольника взаимно перпендикулярны. Докажите, что четыре проекции точки пересечения диагоналей на стороны четырёхугольника лежат на одной окружности.
Дан квадрат ABCD. Точки P и Q лежат на сторонах AB и BC соответственно, причём BP = BQ. Пусть H – основание перпендикуляра, опущенного из точки B на отрезок PC. Докажите, что угол DHQ – прямой.
Окружность радиуса R, проведённая через вершины A, B и
C прямоугольной трапеции ABCD (
Около треугольника ABC описана окружность. Диаметр AD пересекает сторону BC в точке E, при этом AE = AC и BE : CE = m. Найдите отношение DE к AE.
Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 306] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|