ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 82]      



Задача 65058

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Неравенство треугольника (прочее) ]
Сложность: 4-
Классы: 8,9

В выпуклом четырёхугольнике ABCD некоторая точка диагонали АС принадлежит серединным перпендикулярам к сторонам АВ и CD, а некоторая точка диагонали BD принадлежит серединным перпендикулярам к сторонам AD и ВС. Докажите, что ABCD – прямоугольник.

Прислать комментарий     Решение

Задача 66238

Темы:   [ Ортоцентр и ортотреугольник ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Периметр треугольника ]
[ Вписанные и описанные окружности ]
[ Симметрия помогает решить задачу ]
[ Признаки и свойства параллелограмма ]
Сложность: 4-
Классы: 9,10

Автор: Соколов А.

Пусть H – ортоцентр остроугольного треугольника ABC. Серединный перпендикуляр к отрезку BH пересекает стороны BA, BC в точках A0, C0 соответственно. Докажите, что периметр треугольника A0OC0 (O – центр описанной окружности треугольника ABC) равен AC.

Прислать комментарий     Решение

Задача 66258

Темы:   [ Четырехугольники (прочее) ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Биссектриса угла (ГМТ) ]
[ Углы между биссектрисами ]
Сложность: 4-
Классы: 8,9

Диагонали четырёхугольника ABCD равны и пересекаются в точке O. Серединные перпендикуляры к сторонам AB и CD пересекаются в точке P, а серединные перпендикуляры к сторонам BC и AD – в точке Q. Найдите угол POQ.

Прислать комментарий     Решение

Задача 108163

Темы:   [ Признаки и свойства параллелограмма ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Медиана, проведенная к гипотенузе ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

Диагонали параллелограмма ABCD пересекаются в точке O. Точка M лежит на прямой AB, причём  ∠AMO = ∠MAD.
Докажите, что точка M равноудалена от точек C и D.

Прислать комментарий     Решение

Задача 34995

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Диаметр, основные свойства ]
Сложность: 4
Классы: 7,8,9

Окружность пересекает сторону AB треугольника ABC в точках С1, С2, сторону – в точках A1, A2, сторону СA – в точках B1, B2. Известно, что перпендикуляры к сторонам AB, BC, CA, восставленные соответственно в точках С1, B1, A1, пересекаются в одной точке. Докажите, что перпендикуляры к сторонам AB, BC, CA, восставленные соответственно в точках С2, B2, A2, также пересекаются в одной точке.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 82]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .