ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи У менялы на базаре есть много ковров. Он согласен взамен ковра размера a×b дать либо ковёр размера 1/a×1/b, либо два ковра размеров c×b и a/c×b (при каждом таком обмене число c клиент может выбрать сам). Путешественник рассказал, что изначально у него был один ковёр, стороны которого превосходили 1, а после нескольких таких обменов у него оказался набор ковров, у каждого из которых одна сторона длиннее 1, а другая – короче 1. Не обманывает ли он? (По просьбе клиента меняла готов ковёр размера a×b считать ковром размера b×a.) |
Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 289]
В треугольнике ABC на стороне AB выбраны точки K и L так, что AK = BL, а на стороне BC — точки M и N так, что CN = BM. Докажите, что KN + LM ≥ AC.
Все биссектрисы треугольника меньше 1. Докажите, что его площадь меньше 1.
Сколько в выпуклом многоугольнике может быть сторон, равных наибольшей диагонали?
На прямой расположены три точки A, B и C, причём AB = BC = 3. Три окружности радиуса R имеют центры в точках A, B и C.
Докажите, что в любом треугольнике сумма длин его медиан
больше
Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 289]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке