ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Ребро правильного тетраэдра ABCD равно a, точка K ─ середина ребра AB, точка E лежит на ребре CD и EC : ED = 3 : 1, точка F ─ центр грани ABC. Найдите угол между прямыми BC и KE, расстояние между этими прямыми и радиус сферы, проходящей через точки A, B, E и F. В выпуклом четырёхугольнике ABCD диагональ AC делит пополам отрезок, соединяющий середины сторон BC и AD . В каком отношении она делит диагональ BD ? |
Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 418]
Многочлен p и число a таковы, что для любого числа x верно равенство p(x) = p(a – x).
Доказать, что если p/q – несократимая рациональная дробь, являющаяся корнем полинома f(x) с целыми коэффициентами, то p – kq есть делитель числа f(k) при любом целом k.
Существует ли кусочно-линейная функция f, определённая на отрезке [–1, 1] (включая концы), для которой f(f(x))= – x при всех x?
Последовательность натуральных чисел a1, a2, ..., an, ... такова, что для каждого n уравнение an+2x² + an+1x + an = 0 имеет действительный корень. Может ли число членов этой последовательности быть
{an} – последовательность чисел между 0 и 1, в которой следом за x идёт 1 – |1 – 2x|.
Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 418]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке