Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Три окружности с центрами A, B и C, касающиеся друг друга и прямой l, расположены так, как показано на рисунке. Пусть a, b и c – радиусы окружностей с центрами A, B и C соответственно. Докажите, что .

Вниз   Решение


Постройте треугольник ABC, зная три точки A1, B1, C1, в которых биссектрисы его углов пересекают описанную окружность.

ВверхВниз   Решение


Даны две прямые, пересекающиеся в точке O. Найдите ГМТ X, для которых сумма длин проекций отрезков OX на эти прямые постоянна.

ВверхВниз   Решение


Дана четырёхугольная пирамида SABCD , основание которой – параллелограмм ABCD . Точки M , N и K лежат на ребрах AS , BS и CS соответственно, причём AM:MS = 1:2 , BN:NS = 1:3 , CK:KS = 1:1 . Постройте сечение пирамиды плоскостью MNK . В каком отношении эта плоскость делит ребро SD ?

ВверхВниз   Решение


Окружность касается стороны BC треугольника ABC в точке M, стороны AC — в точке N, а сторону AB пересекает в точках K и L, причём KLMN — квадрат. Найдите углы треугольника ABC.

ВверхВниз   Решение


Дана четырёугольная пирамида SABCD , основание которой – параллелограмм ABCD . Через середину ребра AB проведите плоскость, параллельную прямым AC и SD . В каком отношении эта плоскость делит ребро SB ?

ВверхВниз   Решение


В треугольнике ABC стороны CB и CA равны соответственно a и b. Биссектриса угла ACB пересекает сторону AB в точке K, а описанную окружность треугольника ABC – в точке M. Описанная окружность треугольника AMK вторично пересекает прямую CA в точке P. Найдите AP.

ВверхВниз   Решение


На стороне AD параллелограмма ABCD взята точка P так, что  AP : AD = 1 : n,  Q – точка пересечения прямых AC и BP.
Докажите, что  AQ : AC = 1 : (n + 1).

Вверх   Решение

Задачи

Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 385]      



Задача 115467

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Теория графов (прочее) ]
Сложность: 4-
Классы: 7,8,9,10

На дне рождения у Васи было 10 ребят (включая Васю). Оказалось, что у каждых двух из этих ребят есть общий дедушка.
Докажите, что у семи из них есть общий дедушка.

Прислать комментарий     Решение

Задача 30792

Темы:   [ Деревья ]
[ Степень вершины ]
Сложность: 4
Классы: 8,9

В некоторой стране 30 городов, причём каждый соединён с каждым дорогой.
Какое наибольшее число дорог можно закрыть на ремонт так, чтобы из каждого города можно было проехать в любой другой?

Прислать комментарий     Решение

Задача 30806

Темы:   [ Обход графов ]
[ Деревья ]
[ Четность и нечетность ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 8,9

Докажите, что связный граф, имеющий не более двух нечётных вершин, можно нарисовать, не отрывая карандаша от бумаги и проводя каждое ребро ровно один раз.

Прислать комментарий     Решение

Задача 30824

Темы:   [ Ориентированные графы ]
[ Обход графов ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 8,9

На ребрах связного графа расставлены стрелки так, что для каждой вершины числа входящих и выходящих рёбер равны.
Докажите, что двигаясь по стрелкам, можно добраться от каждой вершины до любой другой.

Прислать комментарий     Решение

Задача 31091

Темы:   [ Степень вершины ]
[ Обход графов ]
[ Принцип крайнего (прочее) ]
[ Доказательство от противного ]
Сложность: 4
Классы: 6,7,8

В графе 20 вершин, степень каждой не меньше 10. Доказать, что в нём есть гамильтонов путь.

Прислать комментарий     Решение

Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 385]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .