ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Два равных конуса имеют общую высоту. Плоскости их оснований параллельны. Докажите, что объём общей части конусов равен четверти объёма каждого из них.

Вниз   Решение


Числа a1, a2, ..., ak таковы, что равенство

$\displaystyle \lim\limits_{n\to\infty}^{}$(xn + a1xn - 1 +...+ akxn - k) = 0

возможно только для тех последовательностей {xn}, для которых $ \lim\limits_{n\to\infty}^{}$xn = 0. Докажите, что все корни многочлена

P($\displaystyle \lambda$) = $\displaystyle \lambda^{k}_{}$ + a1$\displaystyle \lambda^{k-1}_{}$ + a2$\displaystyle \lambda^{k-2}_{}$ +...+ ak

по модулю меньше 1.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 51]      



Задача 60884

 [Эффект девяток]
Тема:   [ Периодические и непериодические дроби ]
Сложность: 4+
Классы: 8,9,10,11

Периодом дроби 1/7 является число  N = 142857.  Оно обладает следующим свойством: сумма двух половин периода – число из одних девяток
142 + 857 = 999).  Докажите в общем случае, что для простого  q > 5  и натурального  p < q  период дроби p/q есть такое 2n-значное число  N = N1N2,  что  N1 + N2 = .

Прислать комментарий     Решение

Задача 109790

Темы:   [ Периодические и непериодические дроби ]
[ Периодичность и непериодичность ]
[ Простые числа и их свойства ]
[ Делимость чисел. Общие свойства ]
Сложность: 5-
Классы: 9,10,11

Последовательность {an} строится следующим образом:  a1 = p  – простое число, имеющее ровно 300 ненулевых цифр, an+1 – период десятичной дроби 1/an, умноженный на 2. Найдите число a2003.

Прислать комментарий     Решение

Задача 77957

Темы:   [ Приближения чисел ]
[ Десятичные дроби ]
Сложность: 2+
Классы: 9

Вычислить с шестьюдесятью десятичными знаками     (60 девяток).

Прислать комментарий     Решение

Задача 60845

Темы:   [ Рациональные и иррациональные числа ]
[ Периодические и непериодические дроби ]
[ Доказательство от противного ]
Сложность: 3
Классы: 7,8,9

Пусть число α задаётся десятичной дробью
  а) 0,101001000100001000001...;
  б) 0,123456789101112131415....
Будет ли это число рациональным?

Прислать комментарий     Решение

Задача 65894

Темы:   [ Арифметические действия. Числовые тождества ]
[ Десятичные дроби (прочее) ]
Сложность: 3
Классы: 6,7

Поставьте в каждом из шести чисел по одной запятой так, чтобы равенство стало верным:  2016 + 2016 + 2016 + 2016 + 2016 = 46368.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 51]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .