ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

  Радиус OM круга равномерно вращается, поворачиваясь в секунду на угол 360°/N  (N – натуральное число, большее 3). В начальный момент он занимал положение OM0, через секунду – OM1, ещё через две секунды после этого (то есть через три секунды после начала) – OM2, ещё через три секунды после этого – OM3, и т. д., ещё через  N – 1  секунду после ОМN–2  – OMN–1.
  При каких N эти положения радиуса делят круг на N равных секторов?
  а) Верно ли, что к числу таких N относятся все степени двойки?
  б) Относятся ли к числу таких N какие-либо числа, не являющиеся степенями двойки?

Вниз   Решение


Вавилонский алгоритм вычисления $ \sqrt{2}$. Последовательность чисел {xn} задана условиями:

x1 = 1,        xn + 1 = $\displaystyle {\textstyle\dfrac{1}{2}}$$\displaystyle \left(\vphantom{x_n+\frac{2}{x_n}}\right.$xn + $\displaystyle {\frac{2}{x_n}}$$\displaystyle \left.\vphantom{x_n+\frac{2}{x_n}}\right)$        (n $\displaystyle \geqslant$ 1).

Докажите, что $ \lim\limits_{n\to\infty}^{}$xn = $ \sqrt{2}$.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 375]      



Задача 54025

Тема:   [ Против большей стороны лежит больший угол ]
Сложность: 2
Классы: 8,9

Докажите, что отрезок, соединяющий вершину равнобедренного треугольника с точкой, лежащей на основании, не больше боковой стороны треугольника.

Прислать комментарий     Решение


Задача 57304

Тема:   [ Неравенства с медианами ]
Сложность: 2
Классы: 8

Докажите, что  (a + b - c)/2 < mc < (a + b)/2, где a, b и c - длины сторон произвольного треугольника, mc - медиана к стороне c.
Прислать комментарий     Решение


Задача 57416

Тема:   [ Неравенства с высотами ]
Сложность: 2
Классы: 8,9

Докажите, что в любом треугольнике сумма длин высот меньше периметра.
Прислать комментарий     Решение


Задача 57470

Тема:   [ Против большей стороны лежит больший угол ]
Сложность: 2
Классы: 9

Докажите, что  $ \angle$ABC < $ \angle$BAC тогда и только тогда, когда AC < BC, т. е. против большего угла треугольника лежит большая сторона, а против большей стороны лежит больший угол.
Прислать комментарий     Решение


Задача 57471

Тема:   [ Против большей стороны лежит больший угол ]
Сложность: 2
Классы: 9

Докажите, что в треугольнике угол A острый тогда и только тогда, когда ma > a/2.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 375]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .