Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

В пространстве построена замкнутая ломаная так, что все звенья имеют одинаковую длину и каждые три последовательных звена попарно перпендикулярны. Доказать, что число звеньев делится на 6.

Вниз   Решение


Дан выпуклый 2n-угольник A1...A2n. Внутри него взята точка P, не лежащая ни на одной из диагоналей.
Докажите, что точка P принадлежит чётному числу треугольников с вершинами в точках A1,..., A2n.

ВверхВниз   Решение


Игровое поле представляет собой горизонтальную полоску размером 1×100 клеток. В самой левой клетке стоит фишка. Двое по очереди двигают фишку вправо, причём за один ход разрешается сдвинуть фишку вправо на расстояние от 1 до 10 клеток. Проигрывает тот, кто не может сделать ход (то есть перед его ходом фишка находится в самой правой клетке). Кто выиграет при правильной игре?

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 49]      



Задача 58202

Тема:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
Сложность: 5
Классы: 9,10

Существует ли правильный треугольник с вершинами в узлах целочисленной решетки?
Прислать комментарий     Решение


Задача 58207

Тема:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
Сложность: 5
Классы: 9,10

Вершины выпуклого многоугольника расположены в узлах целочисленной решётки, причём ни одна из его сторон не проходит по линиям решётки. Докажите, что сумма длин горизонтальных отрезков линий решётки, заключённых внутри многоугольника, равна сумме длин вертикальных отрезков.
Прислать комментарий     Решение


Задача 60868

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Правильные многоугольники ]
[ Метод спуска ]
[ Доказательство от противного ]
[ Рациональные и иррациональные числа ]
[ Целочисленные и целозначные многочлены ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 5
Классы: 9,10,11

Дан лист клетчатой бумаги. Докажите, что при  n ≠ 4  не существует правильного n-угольника с вершинами в узлах решетки.

Прислать комментарий     Решение

Задача 109709

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Наименьшая или наибольшая площадь (объем) ]
[ Пятиугольники ]
[ Теорема Пика ]
Сложность: 5
Классы: 8,9,10,11

На координатной плоскости дан выпуклый пятиугольник ABCDE с вершинами в целых точках. Докажите, что внутри или на границе пятиугольника A1B1C1D1E1 (см. рис.) есть хотя бы одна целая точка.


Прислать комментарий     Решение

Задача 58203

Тема:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
Сложность: 5+
Классы: 9,10

Докажите, что при n ≠ 4 правильный n-угольник нельзя расположить так, чтобы его вершины оказались в узлах целочисленной решетки.
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 49]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .