Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В пространстве построена замкнутая ломаная так, что все звенья имеют одинаковую длину и каждые три последовательных звена попарно перпендикулярны. Доказать, что число звеньев делится на 6.

Вниз   Решение


Дан выпуклый 2n-угольник A1...A2n. Внутри него взята точка P, не лежащая ни на одной из диагоналей.
Докажите, что точка P принадлежит чётному числу треугольников с вершинами в точках A1,..., A2n.

ВверхВниз   Решение


Игровое поле представляет собой горизонтальную полоску размером 1×100 клеток. В самой левой клетке стоит фишка. Двое по очереди двигают фишку вправо, причём за один ход разрешается сдвинуть фишку вправо на расстояние от 1 до 10 клеток. Проигрывает тот, кто не может сделать ход (то есть перед его ходом фишка находится в самой правой клетке). Кто выиграет при правильной игре?

ВверхВниз   Решение


Учитель выбрал 10 подряд идущих натуральных чисел и сообщил их Пете и Васе. Каждый мальчик должен разбить эти 10 чисел на пары, подсчитать произведение чисел в каждой паре, а затем сложить полученные пять произведений. Докажите, что мальчики могут сделать это так, чтобы разбиения на пары у них не были одинаковыми, но итоговые суммы совпадали.

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 112]      



Задача 98444

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Трапеции (прочее) ]
[ Средняя линия треугольника ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

Бумажный прямоугольный треугольник перегнули по прямой так, что вершина прямого угла совместилась с другой вершиной.
  а) В каком отношении делятся диагонали полученного четырёхугольника их точкой пересечения?
  б) Полученный четырёхугольник разрезали по диагонали, выходящей из третьей вершины исходного треугольника. Найти площадь наименьшего образовавшегося куска бумаги.

Прислать комментарий     Решение

Задача 101876

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

Высота прямоугольного треугольника, опущенная на его гипотенузу, делит биссектрису острого угла в отношении  4 : 3,  считая от вершины.
Найдите величину этого угла.

Прислать комментарий     Решение

Задача 108075

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Ортогональная (прямоугольная) проекция ]
[ Вписанный угол равен половине центрального ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Под каким углом видна из вершины прямого угла прямоугольного треугольника проекция на гипотенузу вписанной окружности?

Прислать комментарий     Решение

Задача 115885

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вневписанные окружности ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 3+
Классы: 8,9,10,11

Найдите геометрическое место центров всех вневписанных окружностей прямоугольных треугольников, имеющих данную гипотенузу.

Прислать комментарий     Решение

Задача 116501

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Биссектриса угла (ГМТ) ]
Сложность: 3+
Классы: 8,9,10

Внутри треугольника ABC на биссектрисе его угла B выбрана такая точка M, что  AM = AC  и  ∠BCM = 30°.  Докажите, что  ∠AMB = 150°.

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 112]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .