Страница:
<< 34 35 36 37
38 39 40 >> [Всего задач: 9702]
В треугольнике ABC из произвольной точки D на стороне AB
проведены две прямые, параллельные сторонам AC и BC, пересекающие BC и AC соответственно в точках F и G. Доказать, что сумма длин описанных окружностей треугольников ADG и BDF равна длине описанной окружности треугольника ABC.
Какое наибольшее число острых углов может встретиться в выпуклом многоугольнике?
|
|
Сложность: 2+ Классы: 5,6,7
|
На линейке длиной 9 см нет делений.
Нанесите на неё три промежуточных деления так, чтобы ею можно было измерять расстояние от 1 до 9 см с точностью до 1 см.
Прямая, параллельная стороне AB треугольника ABC, пересекает сторону BC в точке M, а сторону AC – в точке N. Площадь треугольника MCN в два раза больше площади трапеции ABMN. Найдите CM : MB.
Прямая, параллельная стороне LM треугольника KLM, пересекает сторону KL в точке A, а сторону KM – в точке B. Площадь трапеции ALMB в три раза меньше площади треугольника ABK. Найдите MB : MK.
Страница:
<< 34 35 36 37
38 39 40 >> [Всего задач: 9702]