ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 9702]      



Задача 54763

Тема:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 2+
Классы: 8,9

Один из двух смежных углов в 3 раза меньше другого. Найдите эти углы.

Прислать комментарий     Решение

Задача 54766

Тема:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 2+
Классы: 8,9

Точка M лежит внутри угла AOB, OC – биссектриса этого угла. Докажите, что угол MOC равен модулю полуразности углов AOM и BOM.

Прислать комментарий     Решение

Задача 56481

Тема:   [ Подобные треугольники (прочее) ]
Сложность: 2+
Классы: 9

Концы отрезков AB и CD перемещаются по сторонам данного угла, причем прямые AB и CD перемещаются параллельно; M – точка пересечения отрезков AB и CD. Докажите, что величина     остается постоянной.

Прислать комментарий     Решение

Задача 56751

Темы:   [ Медиана делит площадь пополам ]
[ Подсчет двумя способами ]
Сложность: 2+
Классы: 8,9

Докажите, что медианы разбивают треугольник на шесть равновеликих треугольников.
Прислать комментарий     Решение


Задача 57010

Тема:   [ Описанные четырехугольники ]
Сложность: 2+
Классы: 8,9

Четырехугольник ABCD описан около окружности с центром O. Докажите, что  $ \angle$AOB + $ \angle$COD = 180o.
Прислать комментарий     Решение


Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 9702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .