Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 43]
В треугольнике
ABC проведена биссектриса
BD (точка
D лежит на отрезке
AC ). Прямая
BD пересекает окружность
Ω ,
описанную около треугольника
ABC , в точках
B и
E . Окружность
ω , построенная на отрезке
DE как на диаметре,
пересекает окружность
Ω в точках
E и
F . Докажите, что прямая, симметричная прямой
BF относительно прямой
BD ,
содержит медиану треугольника
ABC .
Хорды AB, AC и BC окружности равны соответственно 15, 21 и 24. Точка D – середина дуги CB. На какие части BE и EC делится хорда BC прямой AD?
B некотором треугольнике биссектрисы двух внутренних углов продолжили до пересечения с описанной окружностью и получили две равные хорды. Bерно
ли, что треугольник равнобедренный?
Докажите, что в любом неравнобедренном треугольнике биссектриса лежит между медианой и высотой, проведёнными из той же вершины.
|
|
Сложность: 3+ Классы: 8,9,10
|
Докажите, что в любом неравнобедренном
треугольнике биссектриса лежит между медианой
и высотой, проведенными из той же вершины.
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 43]