Страница:
<< 54 55 56 57
58 59 60 >> [Всего задач: 769]
Из одной точки проведены к кругу две касательные. Длина касательной равна 156, а расстояние между точками касания равно 120. Найдите радиус круга.
AB и AC – касательные к окружности с центром O, M – точка пересечения прямой AO с окружностью; DE – отрезок касательной, проведённой через точку M, между AB и AC. Найдите DE, если радиус окружности равен 15, а AO = 39.
В прямоугольной трапеции меньшее основание равно высоте, а большее основание равно a. Найдите боковые стороны трапеции, если известно, что одна из них касается окружности, проходящей через концы меньшего основания и касающейся большего основания.
Два угла треугольника равны 40° и 80°. Найдите углы треугольника с вершинами в точках касания вписанной окружности со сторонами данного треугольника.
CH – высота прямоугольного треугольника
ABC , проведённая из
вершины прямого угла. Докажите, что сумма радиусов окружностей,
вписанных в треугольники
ACH ,
BCH и
ABC , равна
CH .
Страница:
<< 54 55 56 57
58 59 60 >> [Всего задач: 769]