Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 35]
|
|
Сложность: 4 Классы: 10,11
|
Существует ли выпуклый N-угольник, все стороны которого равны, а все вершины лежат на параболе y = x², если
а) N = 2011;
б) N = 2012?
|
|
Сложность: 4+ Классы: 9,10,11
|
Даны выпуклый многоугольник $M$ и простое число $p$. Оказалось, что существует ровно $p$ способов разбить $M$ на равносторонние треугольники со стороной 1 и квадраты со стороной 1.
Докажите, что длина одной из сторон многоугольника $M$ равна $p$ – 1.
|
|
Сложность: 2+ Классы: 7,8,9
|
На сторонах некоторого многоугольника расставлены стрелки.
Докажите, что число вершин, в которые входят две стрелки, равно числу вершин, из которых выходят две стрелки.
|
|
Сложность: 3- Классы: 9,10
|
Если повернуть многоугольник вокруг некоторой точки на 70 градусов, то он совместится сам с собой.
Какое наименьшее число вершин может быть у такого многоугольника?
|
|
Сложность: 3 Классы: 8,9,10,11
|
Существуют ли два многоугольника, у которых все вершины общие, но нет ни одной общей стороны?
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 35]