Страница: 1
2 >> [Всего задач: 9]
|
|
Сложность: 4 Классы: 9,10,11
|
В треугольнике $ABC$, где $AB < BC$, биссектриса угла $C$ пересекает в точке $P$ прямую, параллельную $AC$ и проходящую через вершину $B$, а в точке $R$ – касательную из вершины $B$ к описанной окружности треугольника. Точка $R'$ симметрична $R$ относительно $AB$. Докажите, что $\angle R'PB = \angle RPA$.
|
|
Сложность: 4+ Классы: 8,9,10
|
Докажите, что две изотомические прямые треугольника не могут пересекаться внутри его серединного треугольника. (
Изотомическими прямыми треугольника $ABC$ называются две прямые, точки пересечения которых с прямыми $BC$, $CA$, $AB$ симметричны относительно середин соответствующих сторон треугольника.)
|
|
Сложность: 4- Классы: 10,11
|
Из N прямоугольных плиток (возможно, неодинаковых) составлен прямоугольник с неравными сторонами. Докажите, что можно разрезать каждую плитку на две части так, чтобы из N частей можно было сложить квадрат, а из оставшихся N частей – прямоугольник.
|
|
Сложность: 5- Классы: 9,10,11
|
В треугольнике ABC проведена биссектриса AD. Точки M и N являются проекциями вершин B и C на AD. Окружность с диаметром MN пересекает BC в точках X и Y. Докажите, что ∠BAX = ∠CAY.
|
|
Сложность: 5 Классы: 10,11
|
Даны два треугольника $ABC$ и $A'B'C'$. Прямые $AB$ и $A'B'$ пересекаются в
точке $C_1$, а параллельные им прямые, проходящие через $C$ и $C'$,
соответственно, в точке $C_2$. Точки $A_1$, $A_2$, $B_1$, $B_2$ определяются
аналогично. Докажите, что прямые $A_1A_2$, $B_1B_2$, $C_1C_2$ пересекаются в
одной точке.
Страница: 1
2 >> [Всего задач: 9]