Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 342]
Докажите, что композиция двух гомотетий с коэффициентами
k1 и
k2,
где
k1k21, является гомотетией с коэффициентом
k1k2,
причем ее центр лежит на прямой, соединяющей центры этих гомотетий.
Исследуйте случай
k1k2 = 1.
Окружности
S1 и
S2 пересекаются в точках
A и
B.
Прямые
p и
q, проходящие через точку
A, пересекают
окружность
S1 в точках
P1 и
Q1, а окружность
S2 — в точках
P2 и
Q2. Докажите, что угол между прямыми
P1Q1
и
P2Q2 равен углу между окружностями
S1 и
S2.
Окружности
S1 и
S2 пересекаются в точках
A и
B.
При поворотной гомотетии
P с центром
A, переводящей
S1
в
S2, точка
M1 окружности
S1 переходит в
M2. Докажите,
что прямая
M1M2 проходит через точку
B.
Пусть
H1 и
H2 — две поворотные гомотетии. Докажите, что
H1oH2 =
H2oH1 тогда и только тогда, когда центры этих поворотных
гомотетий совпадают.
Пусть
H1 и
H2 — две поворотные гомотетии. Докажите, что
H1oH2 =
H2oH1 тогда и только тогда, когда
H1oH2(
A) =
H2oH1(
A) для некоторой точки
A.
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 342]