ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 107]      



Задача 108124

Темы:   [ Углы между биссектрисами ]
[ Вписанные и описанные окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Свойства симметрий и осей симметрии ]
Сложность: 4+
Классы: 8,9

Автор: Храмцов Д.

Пусть I – точка пересечения биссектрис треугольника ABC . Обозначим через A' , B' , C' точки, симметричные точке I относительно сторон треугольника ABC . Докажите, что если окружность, описанная около треугольника A'B'C' , проходит через вершину B , то ABC = 60o .
Прислать комментарий     Решение


Задача 109499

Темы:   [ Точка Торричелли ]
[ Симметрия помогает решить задачу ]
[ Свойства биссектрис, конкуррентность ]
[ Свойства симметрий и осей симметрии ]
[ Три прямые, пересекающиеся в одной точке ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Изогональное сопряжение ]
Сложность: 5-
Классы: 9,10,11

Стороны треугольника ABC видны из точки T под углами 120°.
Докажите, что прямые, симметричные прямым AT, BT и CT относительно прямых BC, CA и AB соответственно, пересекаются в одной точке.

Прислать комментарий     Решение

Задача 110002

Темы:   [ Целочисленные и целозначные многочлены ]
[ Монотонность и ограниченность ]
[ Свойства коэффициентов многочлена ]
[ Свойства симметрий и осей симметрии ]
Сложность: 5-
Классы: 10,11

Для некоторого многочлена существует бесконечное множество его значений, каждое из которых многочлен принимает по крайней мере в двух целочисленных точках. Докажите, что существует не более одного значения, которое многочлен принимает ровно в одной целой точке.

Прислать комментарий     Решение

Задача 105214

Темы:   [ Прямая Симсона ]
[ Вписанные и описанные окружности ]
[ Гомотетия помогает решить задачу ]
[ Свойства симметрий и осей симметрии ]
Сложность: 5
Классы: 8,9,10

Дан треугольник ABC и точки P и Q, лежащие на его описанной окружности. Точку P отразили относительно прямой BC и получили точку P_a. Точку пересечения прямых QP_a и BC обозначим A'. Точки B' и C' строятся аналогично. Докажите, что точки A', B' и C' лежат на одной прямой.
Прислать комментарий     Решение


Задача 110781

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Окружность, вписанная в угол ]
[ Свойства симметрий и осей симметрии ]
[ Вписанные и описанные окружности ]
[ Изогональное сопряжение ]
Сложность: 5+
Классы: 10

Прямые, содержащие медианы треугольника ABC, вторично пересекают его описанную окружность в точках A1, B1, C1. Прямые, проходящие через A, B, C и параллельные противоположным сторонам, пересекают ее же в точках A2, B2, C2. Докажите, что прямые A1A2, B1B2, C1C2 пересекаются в одной точке.

Прислать комментарий     Решение

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 107]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .